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Abstract. We present a simple and flexible method of keeping track of the complex phases and spin
quantisation axes for half-spin initial- and final-state Weyl spinors in scattering amplitudes of Standard
Model high energy physics processes. Both cases of massless and massive spinors are discussed. The
method is demonstrated and checked numerically for spin correlations in τ τ̄ production and decay. Its
application is in our work of combining effects due to multiple photon emission (exponentiation) and spin,
embodied in the Monte Carlo event generators for production and decay of unstable fermions such as the
τ lepton, t-quark and hypothetical new heavy particles. In particular, the recurrent problem of combining,
for such unstable fermions, one author’s calculation of production and another author’s calculation of
decay, in the presence or absence of multiple photon effects, is there given a practical solution, both for
Weyl spinor methods and for the traditional Jacob-Wick helicity methods. Moreover, for massive fermions
we give a simple representation of the amplitude for n(γ) emission ideally suited for numerical evaluation.
No other method is known to us which for arbitrary n has been realized numerically for unstable, massive
fermions. Our paper can contribute also, to the discussion on design principles of the phenomenology
work for the future accelerators such as LHC or NLC.

1 Introduction: What is the problem?

Weyl spinors (Ws) are used in very powerful algorithms
to calculate multiple-particle and in particular multiple-
photon spin amplitudes [1,2]. In Ws calculations the com-
plete control of the spin-dependent complex phase, i.e. of
spin quantization frames, is usually neglected. This is not
a problem, when one is interested in cross sections for sta-
ble particles, but it becomes a crucial limitation if one
needs to combine them with the spin amplitudes for the
decay of an almost stable (narrow resonance) fermion.
The complete spin amplitude for production and decay

is given by the formula:

M =
∑

λ=±1/2

Mprod.
λ Mdecay

λ , (1)

where λ is the projection of the intrinsic spin on the z-
axis in a certain fermion rest frame (see discussion in the
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appendix of [3], and also [4]). Let us call this particular
fermion rest frame the spin quantisation reference frame,
SQRF. When, in the above formula, both production and
decay spin amplitudes are obtained from Feynman rules in
the same calculation, with the same intermediate fermion
states u(p, λ), the situation is simple – we even do not need
to know very precisely the SQRF’s. The above is not true
in the many important practical cases such as the produc-
tion of the τ lepton, t-quark and hypothetical supersym-
metric particles. The reason is the following: the fermion
may have many decay modes, with complicated multipar-
ticle final states, and complicated half-phenomenological
decay matrix elements, calculated and implemented sepa-
rately. For instance in the case of τ decay, the TAUOLA
Monte Carlo [5] represents by itself an independent com-
putational project. In fact every one out of more than
twenty decay modes of the τ represents an independent
project both from the computational and from the theo-
retical perspective. In such a case, it has been a recurrent
problem in the literature and in the use of the literature by
a third party that one author’s calculation of Mprod.

λ and
another author’s calculation ofMdecay

λ do not really occur
in the same SQRF, so that the blind substitution into (1)



424 S. Jadach et al.: Global positioning of spin GPS scheme for half-spin massive spinors

gives wrong results. In our paper, we will present a possible
solution to this problem: The third party can transcribe
both Mprod.

λ and Mdecay
λ according to our (GPS) rules

given below1.
For these practical reasons, combining production and

decay at the density matrix level, even if it seems at first
more complicated, is worth an effort, because formula (1)
would lead to independent sets of spin amplitudes for dis-
tinct combinations of decay modes of unstable final-state
fermions. The density matrix formalism allows for clean
modularity in the calculations and in the architecture of
the corresponding Monte Carlo event generators.
The price one has to pay (for spin effects not to be

destroyed) is that the complete combined density matrix
for all final-state unstable particles must be provided by
the production program with the careful definition of the
corresponding SQRFs. That requires, in particular, full
control of the relative phases of all production spin ampli-
tudes.
In our paper we shall rely on massless and massive

Weyl spinors defined in two papers of Kleiss and Stirling
(KS) [6,7]. An analogous set of massless spinors is also de-
fined in [8]. By supplementing these techniques with rules
for complete control of spin quantization axes (complex
phases) we turn them into a powerful tool for calcula-
tions of unstable half-spin fermions, useful for a Monte
Carlo simulation of production and decay. The aim of the
present work is to adapt the spin amplitude techniques to
the framework established in the works [5,9,10], see also
[11,12]. We shall use it in our work on exclusive coherent
exponentiation [13].
Let us start with the fundamental question of defining

properly the spin quantization axes (and complex phases)
for half-spinWeyl spinors. We present details of the lowest-
order τ -pair production process

e−(p1, λ1) + e+(p2, λ2)→ τ−(q1, µ1) + τ+(q2, µ2) (2)

with spin amplitudes Mprod
λ1λ2µ1µ2

where µ1, µ2 = ±1 de-
note twice the spin z-projection of the corresponding τ
lepton in its rest frame, and λi are analogous spin indices
of e±. To be clear, we will not necessarily always restrict
ourselves to λi and µi being the conventional Jacob-Wick
helicities [14].
The full differential cross section for the combined τ -

pair production and decay reads as follows

dσ = dσprod(q1, q2)
dΓ decay

1 (τ− → X1)

Γ decay
1

×dΓ decay
2 (τ+ → X2)

Γ decay
2

×
 3∑

a,b=0

εa
1ε

b
2Rabcd h

c
1h

d
2

 (3)

1 This point is of the special relevance for the design of the
LHC software which is now taking place

where dσprod is the unpolarized differential cross section
for the production process only, and dΓ decay

i are unpo-
larized differential partial widths for decays of the τ±.
The polarimeter vectors ha

i are related to the τ decay
matrix element (see (2.18) of [15] for its precise defini-
tion)2, and εi are conventional spin polarization vectors
of e± parametrizing their spin density matrices ρλ,λ̄ =
(1 + �σ · �ε)λ,λ̄/2.
All spin effects are embodied in the last term, which

includes the full spin density matrix related to the pro-
duction spin amplitudes as follows:

Rabcd = N−1
∑

λi,µi,λ̄i,µ̄i

Mλ1λ2µ1µ2(Mλ̄1λ̄2µ̄1µ̄2
)�

×σa
λ1λ̄1

σb
λ2λ̄2

σc
µ̄1µ1

σd
µ̄2µ2

,

N =
∑
λi,µi

|Mλ1λ2µ1µ2 |2, a, b, c, d = 0, 1, 2, 3, (4)

where σk for k = 1, 2, 3 are Pauli matrices and σ0
λ,µ = δλ,µ

is just the unit matrix.
The translation in (4) from spin amplitudes to Rabcd,

and the analogous translation from decay spin amplitudes
to the vectors hc and hd, occurs in the SQRF of τ− for in-
dices c, µ1, µ̄1 and in the SQRF of τ+ for indices d, µ2, µ̄2.
Let us stress again that this translation occurs not in some
arbitrary τ± rest frame but in precisely the same SQRF
of τ±, where µi was originally defined as a spin projection
on the z-axis! Not only the z-axis has to be known, but
also the x- and y-axes3. Being in the SQRF makes it also
legitimate to use Pauli matrices for the translation of spin
indices into vector indices in (4)4.
In the practical calculations that implement the above

methodology, see KORALB [10] and KORALZ [16], a spe-
cial subprogram TraLor is available, which implements the
Lorentz transformation from the SQRF5 of each τ± down
to the laboratory system. It is used to transform the mo-
menta of all τ± decay products into the laboratory frame.
This arrangement fully guarantees that all spin effects, in-
cluding spin correlations, are properly reproduced in the
Monte Carlo event generation.
Having convinced the reader that the knowledge and

the proper use of the SQRF for each fermion is very im-
portant, let us look into how it is defined. The obvious

2 The vectors ha
i depend, in general, on momenta of all τ

decay products
3 The change of SQRF by a rotation around the spin quanti-

zation z-axis by an angle φ introduces the factor exp((iφ/2)µ1)
(rotation in spinor representation) in the spin amplitudes and
consequently an R3(φ) rotation in normal space (i.e. adjoint to
spinor representation) acting on the index c in Rabcd. N.B. a
simplest example of Wick rotation is actually R3(φ)

4 Pauli matrices play here the role of Clebsch-Gordan coeffi-
cients to combine two half-spin representations of the rotation
group (two indices in the spin density matrix) into spin 0 and
1 angular momentum objects, see (A.10) in [15]

5 The TraLor subprogram actually provides explicit definition
of the SQRF frame
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choice is to employ the standard definition of spin states
by Jacob and Wick (JW) [14], the so-called helicity states.
In [9] spinors of outgoing τ± (and also of e± beams) were
defined using a variant of the JW prescription6. In the
JW method, states with definite spin projection on the
z-axis (helicity states) are defined by construction in the
SQRF; the full Lorentz transformation down to the labo-
ratory frame is used as an inherent construction element
in the definition of the spin state. In KORALB [9,10] the
JW spin quantization principle was also successfully used
to define spin states of e± and τ± in the presence of one
photon.
On the other hand, looking at the calculations of [9,

10] it is quite clear that the JW method is well suited to
lowest order e−e+ → τ−τ+, but that it is rather compli-
cated to deal with already in the case e−e+ → τ−τ+γ
since the orientation of SQRF systems depends on the
photon direction even in the soft-photon limit. One def-
initely needs a better method to go beyond the single-
photon case. The natural candidates are methods based
on the Weyl spinors, which have proved to be very suc-
cessful for the evaluation of multiple photon emission spin
amplitudes for massless and massive spinors. Generally
Weyl spinors (Ws) have their own internal definition of the
SQRF, substantially different from that in the Jacob-Wick
method. For example in the KS technique [6,7] the spin
quantization axis in the rest frame of the massive fermion
is related to some auxiliary light-like vector k0 involved in
the definition of the massive spinor. The typical definition
of the spinor in the KS method involves a single “brutal”
transformation from the reference fermion state into the
state of definite mass, spin and momentum rather than the
explicit “soft” rotation/boost method of the JW method.
The problem is that in the transformation method of the
Ws/KS techniques the phase, and therefore the position
of the x- and y-axes, is lost or undefined. This is not a
great problem for most of the practical applications of
the Ws/KS techniques, such as the calculation of multiple
photon emission spin amplitudes, which are usually done
with the “modulo phase factor” approach anyway. This
feature of Ws/KS methods inhibits, however, the use of
this method for unstable fermions. The aim of this paper
is to show how to restore the knowledge of the complex
phase and the SQRF for the KS massive spinors of [6,7].
In the following we shall repeat many definitions of [6,

7] in detail. This is made necessary by the fact the cen-
tral question is the control of the spinor phases, and even
knowledge that this phase is zero (in certain cases) forms
an important new result! Our final answer for the prob-
lem of control of Weyl spinor phases and all three axes
of the SQRF is very simple – the reader should not be
misled by its apparent simplicity, it is an important and
new supplement of the existing Ws/KS methods.

6 The JW [14] recipe was modified in [9], and in fact this
choice is closer to that in [3]. For final fermions the y-axis was
placed in the reaction plane, while in the JW prescription it
is related by direct rotation (around the axis perpendicular to
the reaction plane) to the laboratory y-axis

2 Basics of the Weyl technique

For Dirac spinors, wherever an explicit representation is
needed, we employ the Weyl representation of gamma ma-
trices

γ0 =

[
0 I
I 0

]
, γk =

[
0 −σk

σk 0

]
, γ5 =

[
I 0
0 −I

]
. (5)

In the Weyl representation, spinors transform under rota-
tions around the k-th axis and boosts along the j-th axis
as follows [17]:

S(Rk(φ)) = exp

(
− i

2
φ

[
σk 0
0 σk

])
,

S(Bj(χ)) = exp

(
1
2
χ

[
σj 0
0 −σj

])
. (6)

We define eigenstates with definite massless four-momen-
tum p2 = 0 and chirality λ = ±1

�puλ(p) = 0, ωλuλ(p) = uλ(p), ωλ ≡ 1
2
(1 + λγ5), (7)

with the normalization condition uλ(p)ūλ(p) = ωλ �p. The
four basicmassless spinors are defined in a certain primary
reference frame (PRF), as follows:

u+(ζ↑) =


√
2
0
0
0

 , u+(ζ↓) =


0√
2
0
0

 ,

u−(ζ↑) =


0
0
0

−√
2

 , u−(ζ↓) =


0
0√
2
0

 , (8)

and they correspond to particles flying along the z-axis:
ζ↑ = (1, 0, 0, 1) and ζ↓ = (1, 0, 0,−1). It is important to
remember that the relative phases in the above set of basic
vectors are constrained uniquely by the following relations

u±(ζ↓) = S(R2(π))u±(ζ↑), u+(ζ↑) = −�ηu−(ζ↑),
u+(ζ↓) = �ηu−(ζ↓), (9)

where7 η = êx = (0, 1, 0, 0), η2 = −1, η · ζ↑ = 0 and
η · ζ↓ = 0.

3 Massless spinors

The arbitrary massless spinor of momentum p and chiral-
ity λ is generated according to the KS method [6], out of

7 Our ζ↓ corresponds to the vector called k0 in [6] and η is
denoted there by k1
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the two constant basic spinors of opposite chirality (two
out of four in (8))

uλ(p) =
1√
2p · ζ �pu−λ(ζ), ζ ≡ ζ↓. (10)

Written explicitly, see also [8], it looks as follows:

u+(p) =


√
p+√

p−eiφ

0
0

 , u−(p) =


0
0

−
√
p−e−iφ√
p+

 ,
p± ≡ p0 ± p3, p1 + ip2 ≡ pT e

iφ. (11)

The above expressions lead directly to an explicit expres-
sion for the inner product of the two massless spinors

s+(p1, p2) ≡ ū+(p1)u−(p2)

=
√
p−
1 p

+
2 e

−iφ1 −
√
p+
1 p

−
2 e

−iφ2 ,

s−(p1, p2) ≡ ū−(p1)u+(p2) = −(s+(p1, p2))∗. (12)

It is understood that the above formula is evaluated using
four-momenta in the PRF, see (8). The same formula can
be obtained using the original KS expression8:

s+(p, q) = 2
1√
2pζ

1√
2qζ

(13)

× [(pζ)(qη)− (pη)(qζ)− iεµνρσζ
µηνpρqσ] ,

which is applicable in any reference frame, not only in the
PRF.

4 Massive spinors

Spinors for the massive particle with four momentum p
(with p2 = m2) can also be defined using a construction
similar to that in the massless case:

u(p, λ) =
1√
2p · ζ (�p+m) u−λ(ζ),

v(p, λ) =
1√
2p · ζ (�p−m) uλ(ζ). (14)

As we see, in order to obtain the v-spinor for the antiparti-
cle we have to substitute m → −m and λ → −λ, and this
is a general rule in the following. Apart from the Dirac
equation (� p − m)u(p, λ) = 0 and (� p +m)v(p, λ) = 0 the
above spinors obey the following normalization and com-
pleteness relations:

u(p, λ) ū(p, λ) =
1
2
(1 + λγ5 �s) (�p+m),

v(p, λ) v̄(p, λ) =
1
2
(1 + λγ5 �s) (�p−m), (15)

8 The analogous expression in (3.9) of [6] misses factor 2. For
the Levi-Civita tensor we take ε0123 = 1

where

s =
p

m
− ζ

m

p · ζ , s2 ≡ −1, (16)

is the spin quantization vector; in the fermion rest frame,
it points opposite to ζ, i.e. �s ∼ −�ζ, or in other words the
spin quantization axis for every fermion is guided by the
single and common massless vector ζ.
The definition of (14) can be rewritten explicitly in

terms of massless spinors as follows

u(p, λ) = uλ(pζ) +
m√
2pζ

u−λ(ζ),

v(p, λ) = u−λ(pζ)− m√
2pζ

uλ(ζ), (17)

where

pζ = p− ζ
m2

2p · ζ , p2
ζ = 0 (18)

is the light-cone projection of p obtained with the help of
the auxiliary vector ζ. Equation (17) immediately provides
us also with the explicit inner product for the massive
spinors:

ū(p1, λ1)u(p2, λ2) = S(p1,m1, λ1, p2,m2, λ2)
ū(p1, λ1)v(p2, λ2) = S(p1,m1, λ1, p2,−m2,−λ2)
v̄(p1, λ1)u(p2, λ2) = S(p1,−m1,−λ1, p2,m2, λ2)
v̄(p1, λ1)v(p2, λ2) = S(p1,−m1,−λ1, p2,−m2,−λ2) (19)

where

S(p1,m1, λ1, p2,m2, λ2)
= δλ1,−λ2sλ1(p1ζ , p2ζ) + δλ1,λ2

×
(
m1

√
2ζp2

2ζp1
+m2

√
2ζp1

2ζp2

)
. (20)

For the sake of the subsequent discussion, let us also
write the explicit basic massive spinors in the particular
case when the fermion rest frame coincides with the PRF
(in which ζ = (1, 0, 0,−1)):

u(p,+) =


1
0
1
0

 , u(p,−) =


0
1
0
1

 , v(p,+) =


0

−1
0
1

 ,

v(p,−) =


1
0

−1
0

 . (21)

We have omitted the trivial normalization factor
√
m. The

convention for relative phases is inherited from the un-
derlying massless spinors (9). In particular the important
phase relations

S(R2(π))u(p,+) = u(p,−),
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S(R2(π))v(p,+) = v(p,−). (22)

For ultrarelativistic p0 → ∞, or for an almost massless
fermion m → 0, the difference between p and pζ is neg-
ligible and the massive spinor becomes identical with the
corresponding massless spinor:

lim
m→0

u(p, λ) = lim
m→0

v(p,−λ) = uλ(pζ), (23)

lim
mi→0

S(p1,m1, λ1, p2,m2, λ2) = δλ1,−λ2sλ1(p1ζ , p2ζ)

The validity of the above limits is restricted by the con-
dition p · ζ 
 m, i.e. they fail in the special case of p
parallel to ζ and such cases have to be treated one by one,
with special care. In such a case, in (17), the second term,
proportional to mass, survives and dominates. The same
phenomenon occurs in the inner product of (20). Thus, we
have to remember that the naive procedure of taking the
massless fermion limit by means of straightforward omis-
sion of all terms proportional to mass can be dangerous
and the limiting procedure has to be done very carefully9.

5 Again the central question
and the GPS answer

We now come to the central question of interpreting the
massive fermion spinors of (14), the spin vector of (16),
and finding out what the SQRF for these spinors is. The
states u(p,±) and v(p,±) represent pure quantum me-
chanical states, which we intend to use in the Feynman
rules to calculate scattering matrix elements. As we see
for instance from (16), u(p,+) and u(p,−) have spin pro-
jections +1/2 and −1/2 on the vector �s in the fermion rest
frame. Thus the vector �s, which is guided by ζ, determines
the z-axis of the SQRF. This is the easy part of determin-
ing the SQRF. The more difficult question is: Where are
the x- and y-axes of the SQRF corresponding to u(p,+)
and u(p,−) defined in (14)? Is this question meaningful at
all? Yes, it is meaningful because a rotation R3(φ) around
the z-axis introduces a λ-dependent phase in u′(p, λ). In
fact one possible method of finding the x- and y-axes of
the SQRF is to inspect u(p,±) in the rest frame of the
fermion and to adjust φ such that the relative phase of
u′(p,+) and u′(p,−) is zero, i.e. such that the relation
S(R2(π))u′(p,+) = u′(p,−) holds. This rule is, however,
not very practical – we would like to have at our disposal
more practical, easy to apply, rules, which determine the
position of the same x- and y-axes of the SQRF for both
(λ = ±) spinors defined in (14).
The rules for determining all three spin quantization

axes for u(p,±) and v(p,±) of (14) are the following:
– In the rest frame of the fermion, take the z-axis along

−�ζ.
– Place the x-axis in the plane defined by the z-axis from
the previous point and the vector �η, in the same half-
plane as �η.

9 On the other hand, keeping mass terms does not necessar-
ily mean correct results in numerical calculations, because of
machine rounding errors

– With the y-axis, complete the right-handed system of
coordinates.

We call the above rules the Global Positioning of Spin
scheme or in short the GPS rules, and we shall call the
GPS frame the SQRF determined by the GPS rules. We
give here the formal proofs of the above rules.

Proof: Since all massive spinors are defined in terms of two
basic massless spinors u+(ζ↓) and u−(ζ↓), it is sufficient to
consider underlying massless spinors and to prove that af-
ter transforming them from the PRF to the GPS frame
they look the same as in (8), up to a common phase factor.
In other words the two basic massless spinors u+(ζ↓) and
u−(ζ↓) get regenerated in the GPS frame. Without actu-
ally doing explicitly the transformation from the PRF to
the GPS frame we know that because of the Dirac equa-
tion, chirality deefinition (see (7) ), and because ζ ≡ ζ↓ =
const (1, 0, 0,−1) the resulting spinors have to look as fol-
lows

u+(ζ↓) =


0
c2
0
0

 , u−(ζ↓) =


0
0
c3
0

 , (24)

where c2 and c3 are unknown complex constants. We shall
now exploit two facts: (a) in the local GPS frame, �η lies in
z-x plane (with positive x-component) and (b) the four-
vector η obeys η · ζ↓ = 0 and η2 = −1. The above im-
plies that η = (−a, 1, 0, a), where a is a real constant, and
therefore

�η =


0 0 0 1
0 0 1 −2a

−2a −1 0 0
−1 0 0 0

 . (25)

The above completes the proof because we may exploit
the relation

u+(ζ↓) =�η u−(ζ↓) =


0
c3
0
0

 , (26)

see (9), finding out that c3 = c2, and therefore we do really
get back the same looking basic spinors in the GPS frame
as in the original PRF, up to a spin-independent phase
factor c = c3 = c2 = r exp(iφ). In fact one may advance
even one step further and prove that the actual overall
phase φ is exactly zero. We sketch a formal proof of this
conjecture in the following.

Proof: Let us observe that the spinor transformations
S(B1), S(B3) and S(R2), i.e. transformations induced by
boosts in the x-z plane, and the rotation around the y-
axis are purely real, while the S(R3) induced by the ro-
tation around the z-axis is complex and diagonal, see (6).
We shall now analyse the complete string of the Lorentz
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transformations connecting the PRF and the GPS frames
of a given fermion with momentum p. The first rotation
R3(φp) puts �p in the x-z plane and introduces the following
phases: uλ(ζ↓) → exp(iφp/2λ)uλ(ζ↓). Next, the rotation
R2 and boost B3 and again the rotation R2 transform us
to the frame where p = (m, 0, 0, 0) and ζ↓ = (1, 0, 0,−1).
Since the corresponding transformations of spinors are
real, we know that the resulting final uλ(ζ↓) preserves its
complex phase! We are not yet in the GPS frame – the
last transformation needed is the rotation R3(φ′) which
brings �η into the x-z plane. The resulting net phase is
exp((i/2)(φp+φ′)λ). Since we already know from the for-
mer proof of the GPS rules that there is no λ dependence
in the total phase, the only possible solution is that the to-
tal change of the spinor phases is zero, φp+φ′ = 0, modulo
4nπ for some integer n, so that exp((i/2)(φp+φ′)λ) = 1 as
desired. (It is also possible to give the argument, based on
geometry, that φp = −φ′.) We have also checked numeri-
cally, using spinor transformations of (6), that the series
of the above Lorentz transformation really regenerates the
basic spinors u±(ζ) in the GPS frame. For massive spinors,
we have checked numerically that the massive spinors de-
fined in (17) in the laboratory frame, when transformed
properly to the GPS frame, become identical to those of
(21)!
Summarizing: the important property of the GPS rules

is that the basic spinors defined in (14), when transformed
to the GPS rest frame of the fermion, obtain the same
form (are regenerated), up to a real spin-independent,
normalization constant, as the original ones, defined in
(21). The Lorentz transformation from any Lorentz frame,
for instance from the laboratory reference system, to the
SQRF/GPS frame of every massive fermion is therefore
uniquely defined. Thanks to the GPS rules, we are finally
in a situation as comfortable as in the Jacob-Wick method.
The difference is however clear: in the JW method, the
transformation from the laboratory frame to the SQRF is
the essence and the starting point of the method – it is tied
up to the fermion four-momentum in the laboratory sys-
tem, and the axes of that frame. In the GPS method the
SQRF/GPS frame and the Lorentz transformation from
the laboratory to the SQRF/GPS frame are deduced with
the help of the “backward engineering” procedure guided
by the auxiliary vectors ζ and η (common to all fermions),
without any direct reference to the laboratory system.

6 GPS at work, τ -pair spin correlations

In the following we shall show how to apply the GPS rules
in order to find out the Wick rotation [3] responsible for
change of spin quantization axes between the JW and KS
conventions for fermion spinors, for the spin amplitudes
of the e−e+ → τ−τ+ process.
Let us use the variant of JW helicity states defined in

[3] and refer to it as JW2. The JW2 spin states are defined
(quantized) in the τ− rest frame with axes: ẑ = −τ̂+ and
ŷ = τ̂+ × ê−/|τ̂+ × ê−|, and in the τ+ rest frame with
axes: ẑ = −τ̂− and ŷ = −τ̂− × ê+/|τ̂− × ê+|. We denote

as f̂ the unit three-vector parallel to the momentum of
a fermion f . The other (third) axis is always picked in
such a way that the right-handed reference frame (x̂, ŷ, ẑ)
is formed. With the above choice of quantization axes the
double spin density matrix of the τ pair (see formula (2.6)
of [9], used also in the KORALB Monte Carlo [10]) takes
the form:

{RJW2
00cd } = N (27)

×




1 + c2 + M2s2 0 0 0
0 (1 + M2)s2 0 2Mcs

0 0 (1 − M2)s2 0
0 −2Mcs 0 −1 − c2 + M2s2




,

where c = cos θ, s = sin θ, θ is the scattering angle between
e− and τ−,M = 2mτ/s

1/2 and N = 1/(1+c2+M2s2). In
order to simplify the discussion we include only s-channel
photon exchange (the parity-violating Z exchange is ne-
glected). We also neglected the electron mass. To be more
precise, in [9] the spin quantization axes of τ± are slightly
different from JW2; let us call them the KB choice. The
KB spin states are defined (quantized) in the τ− rest frame
with axes ẑ = τ̂+ and x̂ = τ̂+×ê−/|τ̂+×ê−| and in the τ+

rest frame with axes ẑ = −τ̂− and x̂ = τ̂− × ê+/|τ̂− × ê+|.
The transition from KB to JW2 costs additional trivial
Wick rotation R3(π/2) for τ+ and R2(π)R3(π/2) for τ−.
(These rotations are merely permutations and reflection
of axes.) This is what was actually done in order to get
(analytically) our (27) from (2.6) of [9].
On the other hand, we calculate spin amplitudes for

the same process with the basic KS spinors of (17). Using
the Chisholm identity (treating electron spinors as mass-
less) and the inner product of (20), we obtain the following
result:

Mprod,GPS
λ1λ2µ1µ2

= Cδλ1,−λ2

[
ū(q1, µ1)u(p1, λ1)v̄(p2, λ2)v(q2, µ2)

+ū(q1, µ1)v(p2,−λ2)ū(p1,−λ1)v(q2, µ2)
]

= Cδλ1,−λ2

[
S(q1,mτ , µ1, p1, 0, λ1)

×S(p2, 0,−λ2, q2,−mτ ,−µ2)
+S(q1,mτ , µ1, p2, 0, λ2)

×S(p1, 0,−λ1, q2,−mτ ,−µ2)
]
, (28)

where C is an overall normalization constant, unimportant
for our discussion. As compared to the previous result, we
lack insight into the analytical structure of the above for-
mula; it is simply meant to be evaluated numerically. We
are also unable to show analytical expressions for RGPS

00cd

– the translation from Mprod,GPS
λ1λ2µ1µ2

to RGPS
abcd using (4) has

to be done numerically. In view of the nice simplicity of
the JW/KB helicity amplitudes (see eg. (2.3) of [9]), one
may wonder why bother about all the complications of
the KS/GPS scheme. The answer is well known: the KS
spinors (now with GPS supplement) will be very power-
ful and useful once we consider multiple photon emission
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Fig. 1. Numerical illustration of Wick rotation for one τ -pair production event at
√

s =4 GeV, mτ = 1.777 GeV, cos θ =
−0.884680271149. In the upper part we print the complex spin amplitudes Mprod

λ1λ2µ1µ2
, with the numbering style {λ1λ2µ1µ2}

shown explicitly. Then, we show the R00cd, c, d = 0...4, correlation matrix (imaginary part equal zero) as calculated in the GPS
frame, using (4) and (28), and after a (double) Wick rotation to JW2 τ rest frames. On the other hand, the result marked
“analytical” is obtained from (27), also in the JW2 frames. The difference of the two results in the JW2 frame is shown to be
precisely zero

from fermions. In this case, the Jacob-Wick helicities are
no longer so simple and useful, as they were really invented
for the Born amplitudes.
The following exercise would demonstrate that our

GPS rules really work: If we calculate RGPS
00cd numerically

and if we really know precisely (from the GPS rules) in
which τ± reference framesRGPS

00cd is defined, then we should
be able by the appropriate two non-trivial Wick rotations
to get exactly the very simple RJW2

00cd of (27). The two Wick
rotations are in this case just ordinary rotations in two τ
rest frames, corresponding to transformations from the
GPS to the JW2 rest frames. In the following, see Fig. 1,
we show the numerical results, demonstrating precisely
the above operation done numerically. Indeed, we see that
due to the appropriate Wick rotations the R-matrices be-
come identical. This demonstrates clearly that in fact our
GPS supplement to the KS spinor method works in the
practical application. The above exercise is just a small
warm-up for the paper [13], in which we apply the GPS
rules to a full-scale calculation with multiple photon emis-
sions (with exponentiation) and with decaying fermions.

7 Conclusions

In the present paper we have established a method to con-
trol the complex phase and spin quantization reference
frame for the Weyl spinor technique (Kleiss-Stirling type)
for massive and massless spinors. The method applies to
multiphoton emission. The present work opens the way
to extending the work of [5,9,10] (where the spin effects,
photon emission and Monte Carlo event generation were
successfully combined for the first time) to the case of
the multiple photon emission. This is elaborated in [13].
Our paper is meant also to contribute to the discussion
on the organization of the phenomenology work for the
future experiments of LHC and Linear Colliders, provid-
ing relativelly simple working example of the calculation
involving mentioned above techniques.
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